- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Koren, Amnon (3)
-
Massey, Dashiell J. (2)
-
Bracci, Alexa N (1)
-
Hulke, Michelle L. (1)
-
Massey, Dashiell J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Robinson, Peter (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The spatiotemporal organization of DNA replication produces a highly robust and reproducible replication timing profile. Sequencing-based methods for assaying replication timing genome-wide have become commonplace, but regions of high repeat content in the human genome have remained refractory to analysis. Here, we report the first nearly-gapless telomere-to-telomere replication timing profiles in human, using the T2T-CHM13 genome assembly and sequencing data for five cell lines. We find that replication timing can be successfully assayed in centromeres and large blocks of heterochromatin. Centromeric regions replicate in mid-to-late S-phase and contain replication-timing peaks at a similar density to other genomic regions, while distinct families of heterochromatic satellite DNA differ in their bias for replicating in late S-phase. The high degree of consistency in centromeric replication timing across chromosomes within each cell line prompts further investigation into the mechanisms dictating that some cell lines replicate their centromeres earlier than others, and what the consequences of this variation are.more » « less
-
Koren, Amnon; Massey, Dashiell J; Bracci, Alexa N (, Bioinformatics)Robinson, Peter (Ed.)Abstract Motivation Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicating early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing studies have been limited in scale due to technical challenges. Results We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting DNA replication timing information from whole genome sequence data obtained from proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of sequence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measuring replication timing and can readily be applied at scale. Availability and Implementation TIGER is available at https://github.com/TheKorenLab/TIGER. Supplementary information Supplementary data are available at Bioinformatics onlinemore » « less
-
Hulke, Michelle L.; Massey, Dashiell J.; Koren, Amnon (, Chromosome Research)
An official website of the United States government
